mardi 11 septembre |
R.P. Carlyon (MRC-CBU, Cambridge, UK)
The Continuity Illusion: Vowel Perception, Frequency Modulation,
And Hearing Backwards In Time (en anglais). |
|
Abstract:
When a 'target' is turned off and then resumed a short time later,
it can be heard as continuous, provided that the silent interval
is filled by another sound that would have masked the target if
it had actually remained uninterrupted. Hence both the level and
frequency content of the 'inducing sound' are crucial. We performed
a series of experiments investigating this 'continuity illusion'
and its relationship to other aspects of auditory processing. In
one study, we generated four different vowels, each consisting
of two formants (F1 and F2). When the two formants were presented
simultaneously, identification performance was very good. In a
second condition, they were alternated for one second, so that
F1 and F2 were never present at the same time; the duration of
each formant presentation was 100 or 200 ms. Performance in this
condition was close to chance. In a third condition, the F1s and
F2s still alternated, but the silent intervals in each formant
region were filled by noise bursts. The same noise burst was used
to fill the gaps for all the F2s used, and its level was set in
a preliminary experiment to induce the illusion of continuity for
all F2s presented in isolation, and to fail to do so for all F1s.
Similarly, the noise used to fill all F1 gaps induced continuity
for all F1s in isolation, but for no F2s. Performance in this condition
was substantially better compared to the condition with no noise,
and to other conditions in which noise was added only to the F1
or F2 gaps. This demonstrates that the neural mechanisms responsible
for vowel perception receive input from those underlying the continuity
illusion. A second study investigated the finding that, when a
frequency modulated (FM) tone is interrupted, and that interruption
filled by noise, listeners not only hear the tone as continuous,
but also hear the modulation continue through the noise. We wondered
whether the phase of FM would be preserved during the illusion.
To test this, we asked subjects to discriminate between two stimuli,
both of which consisted of two portions of a 1-kHz tone modulated
at a rate of 5 Hz, and separated by a 200-ms interval filled by
noise. The level and frequency content of the noise were sufficient
to induce the continuity illusion. In one of the two sounds the
FM phase was the same after the noise as it would have been if
the tone had been uninterrupted. Subjects could not discriminate
between this sound and one in which the FM phase after the noise
was shifted by 180°. This shows that FM phase is not preserved
in the illusion, and demonstrates a paradoxical percept: subjects
hear a modulation as continuous, but do not notice what would be
an obvious phase reversal in that modulation. Finally, we presented
listeners with a 300-ms wideband noise, which was immediately followed
(without interruption) by a 300-ms narrowband noise. When asked
to adjust the duration of a second narrowband noise presented 500
ms later, they adjusted it to a duration of about 370 ms. This
is consistent with the onset of the first narrowband noise being
perceived as occurring before the end of the wideband noise. We
will present additional data investigating this explanation. If
correct, it is an example of 'hearing backwards in time': a subsequent
sound (narrowband noise) affects what is heard before the end of
a preceding sound (wideband noise).
|
lundi 22 octobre |
D. Wesley Grantham, David Chandler (Department
of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center
for Otolaryngology and
Communication Sciences) "Effects of uncertainty on auditory
spatial resolution in the horizontal plane"
|
mercredi 19 juin |
Nicolas
Grimault Rôle comparé des indices spectraux et
temporels pour la perception de la hauteur et l'analyse séquentielle
des scènes auditives |
|
Résumé :
Aussi performante que puisse être l'analyse spectrale
réalisée par le système auditif, cette analyse
ne peut suffire à expliquer dans son ensemble la perception
auditive humaine. L'analyse temporelle des signaux par le système
auditif complète et pallie aux insuffisances de cette
analyse spectrale et peut expliquer à elle seule un grand
nombre de phénomènes perceptifs observés
en psychoacoustique. Les pertes auditives neurosensorielles s'accompagnent,
le plus souvent, d'une dégradation de la sélectivité fréquentielle.
L'analyse temporelle du signal réalisée par le
système auditif revêt alors une importance particulière
pour la plupart des malentendants.
Au travers de résultats expérimentaux, je montrerai que
ces deux types de mécanismes (spectraux et temporels) peuvent
donner naissance à un continuum perceptif (la hauteur). De la
même façon, je comparerai le rôle des indices spectraux
et temporels pour l'analyse séquentielle des scènes auditives
et je décrirai des résultats récents identifiant
des indices temporels pertinents.
|
|
Barbara
Tillmann Attentes musicales et écoute attentive : deux
aspects de la perception musicale étudiés par imagerie
cérébrale fonctionnelle |
|
Résumé :
Ma présentation regroupe des études d'IRMf qui
s'intéressent soit aux attentes musicales en contexte,
soit aux processus d'attention lors de l'écoute musicale.
Les patrons d'activations cérébrales observés
pour ces aspects de la perception musicale sont similaires à ceux
observés pour le traitement d'autres matériaux
(auditifs, visuels, verbaux).
Pour les attentes musicales, le paradigme d'amorçage harmonique
a permis de montrer antérieurement que l'auditeur développe
des attentes sur des événements musicaux à venir.
Ces attentes vont, selon les cas, faciliter ou retarder le traitement
de l'événement. Basée sur ce paradigme d'amorçage,
notre étude analyse les corrélats neurophysiologiques du
traitement d'une cible musicale reliée ou non-reliée au
contexte précédent. Les données comportementales
acquises lors de la séance d'IRMf répliquent une facilitation
de traitement pour une cible harmoniquement reliée. Les activations
cérébrales associées au traitement de la cible impliquent
entre autres les régions frontales inférieures bilatérales,
avec une plus forte activation pour une cible non-reliée. Ces
résultats sont en accord avec d'autres données de la
littérature qui montrent que ces régions frontales ne sont
pas spécialisées uniquement dans le traitement du langage.
En ce qui concerne l'écoute attentive de la musique, des pièces
musicales polyphoniques combinent plusieurs flux auditifs et créent
des scènes auditives complexes. Ce type de matériel permet
d'étudier des mécanismes neuronaux qui guident l'attention
dans des contextes auditifs naturels. Nous avons manipulé les
extraits musicaux et les tâches expérimentales (par exemple, écouter
sélectivement un instrument) dans deux études IRMf. Les
résultats montrent des réseaux d'activations cérébrales
qui impliquent des régions frontales, pariétales et temporales,
et qui indiquent que l'écoute attentive de la musique recrute
des circuits neuronaux également impliqués dans d'autres
tâches (de mémoire, d'attention, de détection, etc.).
|
mardi 2 juillet |
2 interventions de
Douglas Eck (IDSIA, Lugano, Switzerland) |
|
Learning Long-Timescale Musical Structure: Music
Composition using LSTM Recurrent Neural Networks
Abstract:
Unlike "feed-forward" neural networks, recurrent neural
networks (RNNs) can learn datasets having rich temporal dynamics,
making them good candidates for music composition. Unfortunately,
previous attempts at composing music using RNNs have been disappointing.
Though networks do learn note-by-note transition probabilities
and even capture some phrasal structure, they have been unable
to find the global musical structure that defines a particular
genre. In short, RNNs write music that sounds nice on the surface
but "goes nowhere." In this talk I will demonstrate
that a recent hybrid RNN called LSTM overcomes this fundamental
limitation and learns to compose proper pieces in a given musical
form. In the talk I will provide a brief overview of LSTM and
show how it solves some problems plaguing traditional RNNs. I
will then present details of a music composition model built
using LSTM as the learning device. I will present simulation
results showing that LSTM successfully learns a form of blues
music and is able to improvise novel melodies in that style.
(Though I demonstrate that the music does indeed "go somewhere",
I shall refrain from claiming that it sounds nice). Finally I
will discuss how this work might be used as part of an intelligent
interactive musical device that teaches itself to play through
exposure to other musicians.
|
|
Beat Induction with Spiking Neural Networks
Abstract:
Beat induction is best described by analogy to the activities
of hand clapping or foot tapping, and involves finding important
metrical components in an auditory signal, usually music. Though
beat induction is intuitively easy to understand it is difficult
to define and still more difficult to perform automatically.
I will present a model of
beat induction that uses a spiking neural network (SNN) as the underlying
synchronization mechanism. This approach has some advantages over existing
methods; it runs online, responds at many levels in the metrical hierarchy,
and produces good results on performed music (Beatles piano performances
encoded as MIDI). Furthermore, the synchronization properties of SNNs
have been described analytically, providing a theoretical framework for
understanding model performance. In the talk I will describe the model
in some detail and discuss simulation results. I will also relate the
work to the more ambitious goal of building flexible intelligent music
devices that interact with musicians in real time. Time permitting I
will comment on an important limitation in the model, namely that it
has little prior knowledge about meter and rhythm and has no way to learn
from example. Because the model performs quite well, the importance of
this limitation is unclear. I will discuss ways to implement a learning
algorithm for the model that would allow further exploration.
|
|
|
|
Contacts :
Carolyn Drake, tel
01 55 20 59 30 ou 06 83 82 68 24, Laboratoire de psychologie
expérimentale, Institut de psychologie, Centre universitaire
de Boulogne, 71, avenue Edouard Vaillant, 92774 Boulogne-Billancourt
Cedex
Daniel Pressnitzer
|
|